
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Working ME218C Communications Protocol 

Spring 2013 

May 10, 2013 

Communication Committee 



Revision History 

Date What Who 

May 8, 2013 Initial draft of protocol Communications Committee 

May 9, 2013 Revised draft of protocol Michael Bunne, … 

May 10, 2013 State diagrams updated David Stonestrom 

May 10, 2013 State diagrams updated. 

Corrected Typos 

Ramanan Sampath 

May 10, 2013 Undid state diagram changes, 

fixed actual state diagram 

errors, added explanation 

David Stonestrom 

May 10, 2013 Finalized for second 

submission 

 



Overview 
This communications protocol details the communications for ME218C in spring 2013. The purpose is 

to allow each team’s POD (creative input device) to control every other team’s ROAMER (mobile 

platform with gripper to move safety hatch and open airlock).  

 

This communication works over a wireless Xbee network. The PODs request to take over individually 

numbered (1-3) ROAMERs through a broadcast transmission. If a ROAMER is not connected to 

another POD, it allows incoming POD requests to connect. When the POD is about to get too far out of 

orbit, it disconnects from the ROAMER, allowing the next POD to connect to it and take control. While 

connected, ROAMERs send back their status each time they receive a message directed at them from the 

correct POD.   

 

If either the ROAMER or the POD misses five messages in a row (one second of communication) it will 

treat the connection as lost.   

 

Note for the next few weeks 

For testing purposes, use a ROAMER number of (Team # + 3) unless you are deliberately testing on 

ROAMER number 1-3 for interoperability.  This is to avoid one group accidently driving another 

group’s ROAMER off the work bench.  



State Charts 

 

There is an important distinction for working on the events and services framework:  

 Messages are the full Xbee protocol 13 or 14 bytes that start with 0x7E and end with the 

checksum 

 Message Events are ES_Event events which tell state machines about messages 

 

 

On each of the POD and the ROAMER, there are three state machines running to handle 

communication, as well as interrupt responses for the asynchronous transmit and receive interrupts (this 

can be done with polling if you prefer).   

 

The interrupt response for receive is always active.  It pulls in bytes as they arrive and interacts directly 

with the AsyncReceiveSM to compose incoming messages from the incoming bytes.  After a correct and 

complete message has arrived, there should be a post to one of the other two state machines.  The 

XbeeMessagesSM should be alerted about message status replies from the Xbee with the event 

MessageStatus.  Incoming messages from another Xbee should be sent along to the CommunicationSM 

for the device with the event MessageReceived.  In each case, the events and services framework will 

not pass the whole message in an event, so you will need to make your own arrangements for passing 

the message around.   

 

The interrupt response for transmit is only enabled when the XbeeMessagesSM is in particular states, 

and only until it has finished sending one message.  As it transfers the checksum to the asynchronous 

hardware, the interrupt should disable itself.   

 

The XbeeMessagesSM on each device is responsible for getting each message sent.  It is moved from its 

idle state by the device’s CommunicationSM posting TransmitMessage or BroadcastMessage.  No two 

of these posts should come more frequently the 5Hz due to the structure of the CommunicationSM.  

Once a TransmitMessage or BroadcastMessage event has been posted to the XbeeMessagesSM, it will 

attempt to send the message three times before declaring failure.  It is up to each group to handle the 

debugging response for losing a message.  Due to the slow message rate, there should be no issues with 

the XbeeMessagesSM finishing its three attempts before another message needs to be sent.   

 

The CommunicationSM for each device is responsible for the highest level of the communication 

protocol.  It should get MessageReceived events when the Xbee receives a message, and should post to 

the XbeeMessagesSM when it wants to send messages.  It is responsible for handling connection 

requests, disconnect requests, ROAMER status messages, and POD command transmissions between 

PODs and ROAMERs.   



Async Receive State Machine: 

Idle / Wait for 7E

Receive LSB/
Start timer (2 byte times)
Set LSB of BytesLeft

Wait MSB
Receive 7E / Start Timer (2 byte times)

Timeout

Wait LSB

Receive MSB/
Set MSB of BytesLeft/
Start timer (2 byte times)

Timeout

Receiving Data

Receive Byte [BytesLeft !=0]/
Start timer (2 byte times)/
Save byte

Timeout

Receive Byte [BytesLeft = 0]

CHKSUM Bad/
Post Bad CHKSUM event

CHKSUM good

Message API is 0x89
   - Post MessageStatus
     to XbeeMessagesSM

Message API is 0x81
    - Post MessageReceived
      To XbeeMessagesSM

 

This is a simple state machine to process incoming messages.  It should work with the 

async receive interrupt, putting bytes in the correct location as they come in.  Once the message 

is complete and the checksum is checked, the state machine should route the message to either 

the XbeeMessagesSM or the CommunicationSM.  Red transitions represent error is receiving the 

message, and should be handled for debugging.  



POD Xbee Messages State Machine: 

 

 

Idle

BroadcastCheckForFullAir

BroadcastBackoff

TransmitWaitForXBeeStatus

TransmitBackoff

MessageStatus
< CCA Failure or No ACK>
< RetryCount == 2 >
(this is the third failure)
< Correct Frame# >

-Message Lost

MessageStatus
< CCA failure >
< RetryCount == 2 >
(this is the third failure)
< Correct Frame# >

- Message Lost

CCA_Timer Timeout
-indicates no CCA error

MessageStatus 
    < ACK >
    < Correct Frame# >

BroadcastMessage
-RetryCount = 0
-Retry Timer Timeout 
-Transmit First Byte to Xbee 
    and enable transmit interrupt
-start CCA_Timer (longer than the 
    longest possible time before a 
    CCA failure could come in; depends
    on Xbee options)

MessageStatus 
< CCA failure >
< retryCount less than 2 >
< Correct Frame#>

-start Backoff Timer for
    PODs: (Team#) + 3 ms
    ROAMERs: (ROAMER#) ms
- increment RetryCount 

MessageStatus 
< CCA failure >
< RetryCount less than two >
< Correct Frame# >

-start Backoff Timer
    PODs: (Team#) +3 ms
    ROAMERs: (ROAMER#) ms
- increment RetryCount 

TransmitMessage
-RetryCount = 0
-Transmit First Byte to Xbee 
and enable transmit interrupt

While in this state, the transmit
Interrupt will send out the message 
to the Xbee. Once the Interrupt has 
sent the checksum, it should disable 
itself.

Backoff Timer Timeout 
-Transmit First Byte to Xbee 
    and enable transmit interrupt

While in this state, the transmit
Interrupt will send out the message 
to the Xbee. Once the Interrupt has 
sent the checksum, it should disable 
itself.

Backoff Timer Timeout 
-Transmit First Byte to Xbee 
    and enable transmit interrupt
-restart CCA_Timer

MessageStatus 
< No ACK >
< RetryCount less than two >
< Correct Frame# >

- increment RetryCount 
-Transmit First Byte to Xbee and 
    enable transmit interrupt

 

The receive interrupt should post MessageStatus events to the XbeeMessagesSM when the incoming 

message API is a message status (0x89).  The TransmitMessage and BroadcastMessage events come 

from the POD_CommunicationSM.  The 5Hz limit on transmit rates and the structure of the state 

machines means you should never be posting these events when the XbeeMessagesSM is not in the idle 

state, but it is up to each group to implement their own error checking and debugging.  The designed 

function of this state machine is that it ignores the second message posted.



POD Communication State Machine 

 

NotConnected

WaitingForConnectAccepted

ConnectedWaitingToTransmit

WaitForROAMER_Status

WaitingToSendDisconnect WaitingForDisconnectAccepted

Connect Button
-post BroadcastMessage to XbeeMessagesSM

with connect message
-start Transmit Timer 200ms
-NoReplyCount = 0

Transmit Timer Timeout
< NoReplyCount =5 >

MessageReceived
< Type ConnectAccepted >

-Connection LED on
-store sender address as ROAMER
-start Transmit Timer 200ms

TransmitTimer Timeoout
-restart Transmit Timer 200ms
-NoReplyCount = 0
-post TransmitMessage to XbeeMessagesSM

with Command message

MessageReceived
< Type ROAMER_Status >
< Correct ROAMER Address >

-update SPECIAL indicators 

TransmitTimer Timeout
< NoReplyCount less than 5 >

-restart TransmitTimer
-increment NoReplyCount
-post TransmitMessage to XbeeMessagesSM

with Command message

TransmitTimer Timeout
< NoReplyCount = 5 >
( after the fifth no reply)

-connection lost
-Connection LED off

TransmitTimer Timeout
< NoReplyCount less than 5 >

-restart TransmitTimer
-increment NoReplyCount
-post TransmitMessage to XbeeMessagesSM

with Disconnect message

TransmitTimer Timeout

TransmitTimer Timeout
< NoReplyCount = 5 >
( after the fifth no reply)

-connection lost
-Connection LED off

Disconnect Button

Disconnect Button
-NoReplyCount = 0

TransmitTimer Timeoout
-restart Transmit Timer 200ms
-post TransmitMessage to XbeeMessagesSM

with Disconnect message

PreventSendingConnectTooSoonAfterDisconnect

MessageReceived
< Type DisconnectAccepted >
<Correct ROAMER Number >

-Connection LED Off

TransmitTimer Timeout
< NoReplyCount less than 5 >

-restart TransmitTimer
-increment NoReplyCount
-post BroadcastMessage to 
    XbeeMessagesSM
    with Connect message

 

The receive interrupt should post MessageReceived to the POD_CommunicationSM when it receives an 

incoming message API (0x81).  The POD Communication SM will ignore any other POD’s messages due to 

the message type guard conditions.  It will also ignore any ROAMER except the one it is in control of due to 

the ROAMER address guard condition.  If two ROAMERs share a ROAMER number, the POD will only 

command the first to respond, and the second one will have to time out in order to get disconnected from the 

POD it thinks is controlling it.   



ROAMER Xbee Messages State Machine 

This is just the POD version without the loop for handling broadcast messages. 

 

 

Idle

TransmitWaitForXBeeStatus

TransmitBackoff

MessageStatus 
< CCA Failure or No ACK >
< RetryCount == 2 >
(this is third failure)

- Message Lost

MessageStatus < ACK > MessageStatus 
< CCA failure >
< RetryCount less than two >

-start BACKOFF Timer
    PODs: (Team#) +3 ms
    ROAMERs: (ROAMER#) ms
- increment RetryCount 

TransmitMessage
-RetryCount = 0
-begin Transmitting Bytes to Xbee
     and initialize transmit interrupt

Manages asynchronous 
communication interrupt while 
in this state in order to send 
packet to the Xbee.  Interrupt 
should dissable itself after the 
last byte is sent.

BACKOFF Timer Timeout 
-Transmit First Byte to Xbee
     and enable transmit interrupt

MessageStatus 
< No ACK >
< RetryCount less than two >

- increment RetryCount 
-Transmit First Byte to Xbee and 
    enable transmit interrupt

 
 

The receive interrupt should post MessageStatus events to the XbeeMessagesSM when the incoming 

message API is a message status (0x89).  The TransmitMessage event comes from the 

ROAMER_CommunicationSM.  The 5Hz limit on transmit rates and the structure of the state machines 

means you should never be posting these events when the XbeeMessagesSM is not in the idle state, but 

it is up to each group to implement their own error checking and debugging.  The designed function of 

this state machine is that it ignores the second message posted. 

 



ROAMER Communication State Machine 

 

 

NotConnected

Connected

MessageReceived 
< Xbee: Broadcast >
<Type Connect >
< Correct ROAMER # >

-post TransmitMessage to ROAMER_XbeeMessagesSM
with ConnectAccepted message

-store sender’s address as POD address
-start ExpectedMessage Timer for 210ms
-set MissedCommandsCount to 0

MessageReceived
< Xbee: not broadcast >
< correct POD address >
< Type Command >

-post TransmitMessage to ROAMER_XbeeMessagesSM
with ROAMER_Status message

-respond to commands
-Restart ExpectedMessageTimer for 210ms
-MissedCommandsCount = 0

ExpectedMessageTimer Timeout
< MissedCommandsCount == 4 >
(this is the fifth missed command)

ExpectedMessageTimer Timeout
< MissedCommandsCount less than 4 >

-Increment MissedCommandsCount 
-restart ExpectedMessageTimer for 210ms

MessageReceived
< Xbee: not broadcast >
< correct POD address >
< Type Disconnect >

-post TransmitMessage to ROAMER_XbeeMessagesSM
with DisconnectAccepted message

 

 

The receive interrupt should post MessageReceived to the ROAMER_CommunicationSM when it 

receives an incoming message API (0x81).  The ROAMER will ignore anything except Connect 

requests when not connected.  It will then respond to the first POD to send a connection request with its 

ROAMER number.  Once connected, it will ignore any connection requests and any messages not from 

its POD.   



Byte Specifications, Overall Format 

This protocol is meant to be included inside of an Xbee packet. A brief explanation of the Xbee format 

follows. Our data packets are included in the Data section. 

 

Sending a Packet of Data 

When you want to tell your Xbee to send a message into the world: 

Start 

Delimiter 

Length 

HI 

Length 

LO 

API 

ID 

Frame Target 

Addr HI 

Target 

Addr 

LO 

Options Data <6 or 

5 bytes> 

Checksum 

 

Start Delimiter: 

 0x7E for all communications 

 

Length: 

 HI  – 0x00 for all communications 

 

 LO  – 0x0B if sending from POD 

   – 0x0A if sending from ROAMER 

 

API ID: 

 0x01 for all outbound communications 

  

Frame ID: 

 Start at any number of your choosing, and increment with each sending operation 

-Note: if you allow the Frame ID to be 0, it will disable the response frame from your 

Xbee to your PIC (you won’t get a message with API ID of 0x89 from your Xbee for that 

command) 

 

Target Address: 

 For PODs: 

If NOT already connected to a ROAMER: Set to 0xFFFF to broadcasting a “Connect” 

message 

If already connected to a ROAMER: Set both bytes to Address of that ROAMER 

-Note: Every time you receive a response from a ROAMER, your Xbee will include the 

Source Address of the response.  This is the Target Address that you should use to communicate directly 

to that ROAMER for all future messages until Disconnection occurs. 

For ROAMERs: 

If NOT already connected to a POD: You should not be sending responses 

If already connected to a POD: Set both bytes to Address of that POD 

-Note: Every time you receive a message from a POD, your Xbee will include the Source 

Address of the message.  This is the Target Address that you should use to communicate directly to that 

POD for all future responses until Disconnection occurs.  The ROAMER sends messages only in 

response to messages from the POD. It does not initiate a transmission (a broadcast) on its own. 
 

Options: 

 0x00 for all outbound communications 

 

Data: 

 6 bytes if sending from POD (Type, Message bytes 1-5) 

 5 bytes if sending from ROAMER (Type, Message bytes 1-4) 

 



Data Packet types: POD to ROAMER 

“Connect” to ROAMER: 

0x00 ROAMER # (0x01, 

0x02, or 0x03) 

0x00 0x00 0x00 0x00 

-The ROAMER # should be controlled by an input on your POD and the command will be 

broadcasted to all devices activated.  The ROAMER whose # matches your request (also indicated by a 

switch on the ROAMER) will reply (with an “Accepted Connection” response) and then you will 

proceed to talk only to that ROAMER based on the Source Address of that message. 

-Note: Other PODs activated will also receive this message.  It is the duty of each POD to simply 

ignore messages from other PODs. 

 

“Disconnect” from ROAMER: 

0x01 0x00 0x00 0x00 0x00 0x00 

 -The ROAMER must still send a reply of “Disconnect Accepted” to acknowledge the disconnect.  

There is also a predetermined period of no response time that will also signal a disconnect.  If any device 

(ROAMER or POD), while believing to be connected, experiences 5 full cycles (running at 200ms each 

= 1 sec) without receiving message or response from the other side, then the device will assume the 

connection has been broken and will return to their Disconnected state. 

 

Sending a “Command” to ROAMER: 

0x02 Left Wheel Right Wheel Gripper Camera Digital I/Os 

-Left Wheel: 

  0x00 – Left Wheel Full Reverse 

0x40 – suggested cutoff for ROAMERs which only drive at full speed 

0x80 – Left Wheel stopped 

0xC0 – suggested cutoff for ROAMERs which only drive at full speed 

0xFF – Left Wheel Full Forward 

  

-Right Wheel: 

  0x00 – Right Wheel Full Reverse 

0x40 – suggested cutoff for ROAMERs which only drive at full speed 

0x80 – Right Wheel stopped 

0xC0 – suggested cutoff for ROAMERs which only drive at full speed 

0xFF – Right Wheel Full Forward 

  

-Gripper: 

  Bit 7 (MSB):  Digital bit devoted to Gripper Actuation #1 

  Bits 0-6: Analog bits devoted to Gripper Actuation #2 

  -Note: Each POD should have two inputs for the gripper (one for each potential 

actuation), but neither of these inputs necessarily have to be analog.  If a group decides to use 2 digital 

inputs for the gripper control, they may.  The 2
nd

 digital input will be sent as the 7 analog bits railed high 

or railed low, and it is up to the ROAMER to interpret this however necessary to complete the desired 

action. 

  

-Camera: 

 0x00 – From the Camera's Perspective, turned LEFT from default, 180° from default 

position 

0x40 – suggested cutoff for ROAMERs that turn camera LEFT with digital response 

0x80 – Camera Default Position  

0xC0 – suggested cutoff for ROAMERs that turn camera RIGHT with digital response 



0xFF – From the Camera's perspective, turned RIGHT from default, 180° from default 

position 

-Note: for ROAMERs  and PODs with only 2 camera positions or only 1 direction that 

the camera turns from default, use 0x00 to 0x80 regardless of camera orientation 

 

 -Digital I/Os: 

  Bit 0: Digital bit devoted to controlling SPECIAL’s lower RIGHT light 

  Bit 1: Digital bit devoted to controlling SPECIAL’s upper CENTER light 

  Bit 2: Digital bit devoted to controlling SPECIAL’s lower LEFT light 

  Bits 3-7 (MSB): Digital bits devoted to any extra (non-mission critical) commands that 

may be unique to a particular ROAMER (fans, beacons, self destruct sequence, Harlem Shake).  PODs 

with fewer than 5 additional inputs should route whatever inputs they have to the address starting with 

Bit 3 (i.e. the most critical of any extra functions a ROAMER can perform should be controlled by Bit 3 

with lesser important functions being controlled by successively higher bits) 

  -Note: while it is not required for any POD to have all 5 additional inputs for these 

optional extra commands, it is STRONGLY encouraged (as in nearly required) to provide at least 1 of 

these inputs. 

 

 



Data Packet types: ROAMER to POD 

Sending “ROAMER Status” to POD:  

0x03 SPECIAL 

Battery % 

SPECIAL 

charging/discharging status 

SPECIAL LED states Last Camera Command 

 -The 3 bytes corresponding to the SPECIAL are exactly the same as generated from the 

SPECIAL when queried from the ROAMER’s PIC (it is simply passing this data back to the POD).  The 

last byte is information about the previous camera position that can be used by the POD if the camera 

control is rate-based (as opposed to position based). 

 

Sending “Connect Accepted” to POD:  

0x04 SPECIAL 

Battery % 

SPECIAL 

charging/discharging status 

SPECIAL LED states Last Camera Command 

 -The ROAMER will always send the 3 bytes corresponding to the SPECIAL, and will simply 

change the Type (1
st
 bit) to indicate that it is responding to a Connection, Disconnection, or a standard 

Command. 

 

Sending “Disconnect Accepted” to POD:  

0x05 SPECIAL 

Battery % 

SPECIAL 

charging/discharging status 

SPECIAL LED states Last Camera Command 

 -The ROAMER will always send the 3 bytes corresponding to the SPECIAL, and will simply 

change the Type (1
st
 bit) to indicate that it is responding to a Connection, Disconnection, or a standard 

Command. 

 

 

 

Checksum: 

 -Standard Checksum procedure for talking to the Xbee 

 -There is no additional Checksum to maintain congruence from PIC to PIC (only the standard 

PIC to Xbee will be used) 

 

 

 

 



Result from a Transmit Packet 

After you tell your Xbee to send a message into the world, it will (almost) immediately reply with: 

Start Delimiter Length HI Length LO API ID Frame Status Checksum 

 

Start Delimiter: 

 0x7E for all replies 

 

Length: 

 0x03 for all replies 

 

API ID: 

 0x89 for all replies 

  -Note: For broadcasts, there is only a 0x89 if the message did not send.  If you 

successfully broadcast a message, expect no 0x89 back from your Xbee. 

 

Frame ID: 

 The same Frame ID of the message you just sent the Xbee 

-Note: if you allow the Frame ID to be 0, it will disable the response frame from your 

Xbee to your PIC (you won’t get a message with API ID of 0x89 from your Xbee for that 

command) 

 

Status: 

 0x00 = Success 

 0x01 = No ACK received (meaning it failed to transmit the message, after multiple retries) 

 0x02 = CCA failure 

 0x03 = Purged   

 

 

Checksum: 

 -Standard Checksum procedure for talking to the Xbee 

 -There is no additional Checksum to maintain congruence from PIC to PIC (only the standard 

PIC to Xbee will be used) 

 

 

 



An Incoming Packet 

When your Xbee receives a message addressed to you (or broadcasted) from the world, it sends you: 

Start 

Delimiter 

Length 

HI 

Length 

LO 

API 

ID 

Source 

Addr HI 

Source 

Addr LO 

RSSI Options Data <6 or 

5 bytes> 

Checksum 

 

Start Delimiter: 

 0x7E for all communications 

 

Length: 

 HI  – 0x00 for all communications 

 

 LO  – 0x0B if packet is from POD 

   – 0x0A if packet is from ROAMER 

 

API ID: 

 0x81 for all incoming communications sent from the outside world (not our Xbee responding to 

a command we just tried to send) 

 

Source Address: 

These two bytes represent the unique address of the device that just sent you the message.  If you 

determine that you wish to communicate with this device directly in the future, you should probably 

record these bytes and set them as the Target Address bytes for your next Outgoing Packet 

 

RSSI (Received Signal Strength Indicator): 

 Hexadecimal equivalent of signal strength (probably not important for our purposes) 

 

Options: 

 0x01 = Address broadcast 

 0x02 = PAN broadcast 

 

Data: 

 6 bytes if received from POD (Type, Message bytes 1-5) 

 5 bytes if received from ROAMER to POD (Type, Message bytes 1-4) 

 


